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At this time, microcracks have received the designation of a legitimate defect in the 
structure of solids. Investigations performed in metals by microscopic methods show that 
the deformation under different kinds of loading (developed plastic deformation, creep, 
dynamic and fatigue loading) is accompanied by the multiple generation and growth of micro- 
cracks [1-4]. These latter are characterized by a size distribution, possess anisogeometric 
shape (greater for brittle bodies and smaller for plastic), fracture and relaxation proper- 
ties are determined substantially by the kinetics of microcrack growth [5]. An experimental 
study of fracture under shock loads also established multiple microcrack generation and growth 
in stress waves [3, 4, 6, 7]. A fractographic study shows that dynamic fracture includes 
the following main stages as a rule: rapid microcrack generation, their growth under the 
effect of tensile stresses, microcrack merger and material separation with the formation 
of one or more free surfaces. Starting from the characteristic microcrack shape in [3, 4, 
6], fracture under shockwave loads is subdivided into two classes as for quasistatic loads: 
viscous and brittle. The question of the correlation of dynamic and quasistatic data char- 
acterizing fracture as a microcrack accumulation process is discussed in [3, 8-10]. 

This aspect of fracture apparently merits a detailed study since the observable common- 
ality of the microcrack generation and growth processes in substantially different loading 
modes permits association of a state variable, an independent thermodynamic coordinate, with 
the microcracks and its consideration as a universal structural parameter. Models known 
to this time for the fracture process that take account of microcrack generation and growth, 
consider it from phenomenological aspects as a rule. However, as is noted in [ii, 12], under- 
lying the description of the deformation and fracture of media with defects of this kind 
should be a statistical model of defect accumulation, including the investigation of the 
whole ensemble of microcracks, each of which is developed in a random stress field determined 
by the microcracks of the environment and the microinhomogeneity of the material. Experiments 
show that fracture seeds in the form of some kind of imperfections exist in every real solid. 
Consequently, the growth of fracture from already existing defects must be examined in the 
construction of a fracture model. It is also characteristic that the physical regularities 
of the fracture process are determined by local relationships, which change substantially 
even for constancy of the initial values. 

i. A statistical-thermodynamic model of solids with microcracks is proposed in [13, 
14]. A symmetric tensor Pik, the microcrack density tensor, is used as an additional state 
variable to characterize the bulk microcrack concentration and their preferred orientation. 
This latter is determined by taking the average over the statistical ensemble of microcracks 

Pt~ = n ~ s lhWdsd~  ( 1 . 1 )  

w h e r e  S i k  = s v i v  k i s  a s y m m e t r i c  t e n s o r  g o v e r n i n g  t h e  v o l u m e  s and  t h e  o r i e n t a t i o n  ~ o f  t h e  
m i c r o c r a c k s  o f  " n o r m a l "  s e p a r a t i o n ;  W = Z -1  e x p  ( - E / T )  i s  t h e  m i c r o c r a c k  G i b b s  d i s t r i b u t i o n  
l a w  b y  s i z e  a n d  o r i e n t a t i o n ;  Z i s  a n o r m a l i z i n g  f a c t o r ;  E i s  a m i c r o c r a c k  e n e r g y ;  T i s  t h e  
t e m p e r a t u r e  m e a s u r e d  i n  e n e r g e t i c  u n i t s ;  a n d  n i s  t h e  n u m b e r  o f  m i c r o c r a c k s  p e r  u n i t  v o l u m e  
( n  = 1 0 1 1 - 1 0 1 3 ) .  

A s t u d y  o f  t h e  p r o p e r t i e s  o f  an  e l a s t i c  medium w i t h  m i c r o c r a c k s  on t h e  b a s i s  o f  ( 1 . 1 )  
f o r  u n i a x i a l  t e n s i o n  o f  t h e  s p e c i m e n  p e r m i t t e d  c l a r i f i c a t i o n  o f  t h e  c h a r a c t e r i s t i c  r e a c t i o n s  
o f  s o l i d s  t o  c r a c k  f o r m a t i o n  [ 1 4 ] .  D i s p l a y e d  i n  F i g .  l a  a r e  d e p e n d e n c e s  o f  t h e  p a r a m e t e r  
P z z  on t h e  s t r e s s  a z z  a t  a f i x e d  t e m p e r a t u r e  T f o r  d i f f e r e n t  v a l u e s  o f  t h e  s t r u c t u r a l  p a r a m -  
e t e r  5 ( c u r v e s  1 - 3  c o r r e s p o n d  t o  5 < 6 c ,  6c < 6 < 6 , ,  5 > 5 , ) .  I t  i s  shown i n  [ 1 5 ]  t h a t  t h e  
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magnitude of this last depends on the natural scale characteristios ~f the material: the 
mean size of the structual heterogeneity and the c~orrelation radius of the microstress fields 
induced by the microcracks. For values 6 > 6,, the dependence pzz(Ozz) is monotonic in na - 
ture: a unique microcrack concentration corresponds to the applied stress and the reaction 
to crack formation is reversible. This result is confirmed by experiments [5, 16]. Metasta- 
bility in the parameter Pzz associated with the orientational degrees of microcrack freedom 
is observed in the interval 6c < 6 < 6,. An abrupt change in the bulk microcrack concentra- 
tion occurs here in the ambiguity domain. Such a nature of the change in material density 
during deformation was first detected by ~auschinger and later confirmed by a significant 
number of experiments [17]. For values 6 < 6c, the jump in the parameter Pzz will be in- 
finite and the reaction of the material to the microcrack generati~o~ and growth in the domain 
Ozz > o c becomes absolutely unstable. An illustration of the curves pzz(Ozz) is presented .in 
Fig. ib, where dependences of part of the f~ee energy asso~ci~ted with microcracks F ~nT. 
in Z corresponding to characteristic reactionN are shown <the dependences 1-3 correspond 
to 6 > 6, for o = o l, 6 c < 6 < 6, for o = o r , ~ < 6 c for o = 02). For values 6 > 6,, there 
is one minimum on the curves; the phase metastability in the overlap domain (~c < 6 < 6,) is 
associated with the existence of two minimums of the function F(pzz). ~or 5 < ~c, a meta- 
stability domain corresponds to the set of stress values smaller than Oc; however, ~true 
minimum of the function F(pz g) ,becomes infinitely deep and the bulk microcrack concentration 
for a finite stress c~n ~e ar'bitrarily high. 

The interrelation of the kinetics of crack fo~ma~iom~nd plastic deformation is studied 
in [18] in a local equilibrium approximation. The diss~pa~tirve ~unction for the s~stem ~ 
which plastic relaxation and disperse fracture ~xi~t has ~he :~orm 

.~Ox~ ' + ~ e ~  + oeP--~xzk -~  

where PS i s  t he  ~ntro~p~ p r o d ~ c t ~ o n ;  qk, hea t  f l u x  v e c t o r  components;  ~ik = OF/~Pik, thermo-  
dynamic f o r c e  a c t i n g  :on ~ e  sy s t em when the  v a l u e  of  Pik d i f f e r s  {rbm ~ t ~ e e q u i l i b r i u m  v a l u e ;  ! ! 
~ i k ' ,  e l k  p , Pik , H2k' anO o, eP, p, and H, t r a c e l e ~ s  and i s d s  t e n s o r  components ,  
p l a s t i c  s t r a i n  r a t e s ,  m i c r o c r a c k  d e n s i t y  p a r a m e t e r ,  ~nd : t * ~ s 6 r ~ i k ;  ( & P i k ' / a t )  = ( d P i k ' / d t )  - 
~is163 - ~s ' , t e n s o r  d e r i v a t i v e  wi th  r e s p e c t  ~b ~ i ~  ~s Jaumann d e r i v a t i v e  [ 1 9 ] ) ;  
~is antisymmetric vortex tensor. 

According to (1.2), the constitutive eq~tJi~s are written in a linear approximation in 
the nonequilibrium as [13, 20] 

q~ = ~.m: (Pc~fO ax  k , ( 1 . 3 )  

= ~(p)~, - =(p)p; (1.4)  

I I  = e~(p)eP - -  ~(p)p; ( 1 . 5 )  
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= ~ ik lm  A-----~ ' (1.6) 
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' r ( 2 )  (1.7) 

At 

with symmetry of the coefficients ~, Liks (=) taken into account and under positive-definite- 

ness Conditions for the coefficients ~ik, Liks (I), and Liks (3). 

Equations (1.3)-(1.7) are quasilinear: the kinetic coefficients Ilk, ~, a, 6, and 
Liks (v) depend on Pik in the general case. The anisotropy of the kinetic coefficients as- 
sociated with the structural parameter Pik describes the deformation anisotropy of the mech- 
anical properties and the appearance of texture in the plastically deformed material. Taking 
account of the symmetry of the tensor Pik, the general form of the dependence of the kinetic 

(,) 
coefficients Liks on Pik is the following: 

LeO l(~)~iz6~r " + l~';) ihlm = (PiZ~km + Pkz6~m) + l~V)pikpzm ( 1 . 8 )  

(s s and s (v) are phenomenological coefficients). Analogously, we have the follow- 
ing representation for the tensor of the heat-conduction coefficients ~ik coaxial with the 
tensor Pik: 

~ih = ~o6ih @ ~xPih, 

where ~0 is the heat-conduction coefficient of the initially isotropic material, and ~i is 
the material parameter dependent on the invariants of the tensor Pik in the general case. 

The material equations of state include relationships of relaxation type for the stress 
tensor (1.4), (1.6) and equations of motion for the parameter Pik (1.5) and (1.7). Taken in- 
to account in these equations are "crossover" effects: the influence of crack-formation 
on relaxation processes and plasticity on growth kinetics Pik" Later, the case is considered 
when the plastic deformations are subject to the condition Sp elk p = 0, while the mean stress 
o is determined by the elastic components of the strain tensor 

e i 3~ u~k = ~-~ (oih -- ~6ih) + ~6~h ( 1 . 9 )  

(~ and K a r e  t h e  s h e a r  and volume c o m p r e s s i o n  m o d u l i ) .  

The e q u a t i o n s  o f  s t a t e  ( 1 . 4 ) - ( 1 . 7 )  were used  in  [18] t o  d e s c r i b e  t h e  r e g u l a r i t i e s  o f  
t h e  d e f o r m a t i o n  and f r a c t u r e  unde r  c o n d i t i o n s  o f  c r e e p  and t e n s i o n  w i t h  a c o n s t a n t  s t r a i n  
r a t e  6 z z .  

A q u a l i t a t i v e  c o m p a r i s o n  i s  made in  F i g .  2 o f  t h e  c h a r a c t e r i s t i c  d e f o r m a t i o n  c u r v e s  
and t h e  k i n e t i c  d e p e n d e n c e s  r e f l e c t i n g  t h e  change  in  P i k .  For  h i g h  s t r a i n  r a t e s  t h e  depen-  
dence  Ozz(Uzz)  i s  a l m o s t  l i n e a r  in  n a t u r e  ( c u r v e  1 ) .  An a b r u p t  r e d u c t i o n  in  t h e  r e s i s t a n c e  
t o  d e f o r m a t i o n  s t a r t i n g  w i t h  c e r t a i n  v a l u e s  o f  Pzz i s  a s s o c i a t e d  w i t h  t h e  i n t e n s i v e  g rowth  in  
t h e  m i c r o c r a c k  bu lk  c o n c e n t r a t i o n  d u r i n g  t h e  p a s s a g e  t o  t h e  a b s o l u t e l y  u n s t a b l e  b r a n c h  o f  
t h e  dependence  p z z ( a z z )  ( s e e  F i g .  l a ,  c u r v e  1) .  The p r o c e s s  o f  m i c r o c r a c k  a c c u m u l a t i o n  i s  de-  
v e l o p e d  in  t h e  e x p l o s i v e  i n s t a b i l i t y  r eg ime  in  t h i s  c a s e .  As t h e  s t r a i n  r a t e  d i m i n i s h e s ,  
t h e  l i n e a r  s e c t i o n  s h i f t s  t o  t h e  p l a s t i c i t y  s e c t i o n  w i t h  n o n l i n e a r  h a r d e n i n g  ( c u r v e  2 ) ,  which 
goes  o v e r  i n t o  t h e  d e s c e n d i n g  b r a n c h ,  as  in  t h e  f i r s t  c a s e ,  c o r r e s p o n d i n g  t o  a v a l a n c h e l i k e  
g rowth  o f  t h e  m i c r o c r a c k s .  U n s t a b l e  d e f o r m a t i o n  ( c u r v e  4 ) ,  accompan ied  by t h e  a p p e a r a n c e  
o f  a " t o o t h "  and a f l o w  a r e a  i s  o b s e r v e d  in  a c e r t a i n  s t r a i n  r a t e  r a n g e .  

The a p p e a r a n c e  o f  i n s t a b i l i t y  i s  r e l a t e d  t o  t h e  p r e s e n c e  o f  a m e t a s t a b i l i t y  domain in  
t h e  p a r a m e t e r  Pzz" Under c o n d i t i o n s  o f  p a s s a g e  f rom t h e  lower  t o  t h e  u p p e r  b r a n c h  in  t h e  
m e t a s t a b i l i t y  domain ( s e e  F i g .  l a ,  c u r v e  2 ) ,  t h e  r e l a x a t i o n  tempo i n c r e a s e s  a b r u p t l y .  At 
r e l a t i v e l y  m o d e r a t e  s t r a i n  r a t e s ,  t h e  p a s s a g e  f rom t h e  lower  t o  t h e  uppe r  b r a n c h  o c c u r s  a l -  
most  on the equilibrium transition line c-c and the flow "tooth" is not observed in practice 
(curve 5). As the strain rate increases, deeper penetration occurs into the metastability 
domain, resulting in growth of the magnitude of the jump in the stress with an effective 
increase in the elasticity limit (curve 3). The hardening section here also passes higher, 
which is explained by the growth of the viscous resistance to deformation. 
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Therefore, the proposed system of equations permits description of the different solid- 
body reaction to deformation with the nonlinear kinetics in the microcrack density parameter 
Pik taken into account. 

2. Let us consider formulation of the problem of cleavage during propagation of a plane 
one-dimensional compression wave in the z direction in a plate. In this case, exx P = ey$P = 
6xx e = 6yye = 0, Pxx = Pyy = 0. We limit ourselves to the first terms in the expansion in 

(1.8), and then taking account of the assumptions introduced, the system of equations of 
state in conjunction with the mass and momentum conservation laws takes the form 

I 
p---- - - { H ;  ( 2 . 1 )  

' (i) ~p' l(2) Op:: ( 2 . 2 )  a z z = l  ezz-- at ; 

[I;z = l(~-)ePz: --/(a) aP~z . 
Ot ' 

( 2 . 3 )  

0p 0 
at • (OVa); ( 2 . 4 )  

0 0 
0~ (P~)  = - r~(P  ~ - ~=) ,  ( 2 . 5 )  

where  p i s  t h e  m a t e r i a l  d e n s i t y  and v z i s  t h e  v e l o c i t y  v e c t o r  componen t .  

The e q u a t i o n s  p r e s e n t e d  mus t  be s u p p l e m e n t e d  a l s o  by k i n e m a t i c  r e l a t i o n s h i p s  c o n n e c t e d  
t o  t h e  i r r e v e r s i b l e  ( p l a s t i c )  s t r a i n  r a t e  t e n s o r  e l k  p t o  t h e  e l a s t i c  r a t e s  Uik e and t h e  com- 
p l e t e  d e f o r m a t i o n  Uik .  A n a l y s i s  o f  t h e  d e f o r m a t i o n  in  t h e  p l a t e  c o l l i s i o n  p r o b l e m  [21] 
showed t h a t  t h e  s t r a i n  t e n s o r  c o m p o n e n t s  do n o t  e x c e e d  0 . 0 1  u n d e r  c l e a v a g e  f r a c t u r e  c o n d i -  
t i o n s  f o r  m e t a l s .  For  such  v a l u e s  t h e  k i n e t i c  r e l a t i o n  i s  

p " e 
uu, = e ih + ui,,. ( 2 . 6 )  

T r a n s f o r m i n g  ( 2 . 1 ) - ( 2 . 5 )  w i t h  t h e  r e l a t i o n s h i p s  ( 1 . 9 )  and ( 2 . 6 )  t a k e n  i n t o  a c c o u n t  a f t e r  
i n s e r t i o n  o f  t h e  p a r a m e t e r s  ~ = Ozz/pCs 2, s = t / x s  (~s  = h / c s  cs = r  + 4/s lJ ) /p  i s  t h e  
l o n g i t u d i n a l  wave v e l o c i t y ) ,  fi = Vz/C ~, 5 = P /P0 ,  r = ( h / z )  -1 (h i s  t h e  p l a t e  t h i c k n e s s ) ,  
IF[' - -  1 h 1-[o h 2 2~ 2 

' = II~m ,, a = l(Z)/l(I) the equations are transformed l- ~ ~ [[zz, -~t  = /(1)/~t, X = ~ "(3K/- 2~) pc~ 

(the symbol - of dimensionless variables is later omitted): 

Op' 2 ( O r  t ) _ _  H , 0 a  Op __HO, = ~ (2.7) 

Op" o 0 Op o o~ o~ T~ ~; --~• ~7 (pv) (pv ~ -- a) - = --' ~ (pv) 
,, ot • 0~ T m - - ~ '  O~ ' at " 

Now find the numerical solution of the system (2.7) that satisfies the boundary 

and initial conditions 

o(0,  t) = a J 0 ,  a ( l ,  ti = 0 

v(~, o) = a(~, 0) = p(~,  0) = 0, P (L  0) = 1.  

Here  a o ( t )  i s  a g i v e n  f u n c t i o n ,  a = a o ( t )  f o r  t ~ t z ,  and a o ( t )  =- 0 f o r  t > t l .  To o b t a i n  
the finite-difference analog of the mentioned equations, an explicit difference scheme of 
second-order accuracy is used [22]. The time and space mesh parameters were selected in 
conformity with the stability condition At <_ min {LfAx/a}, where Lf = i/3 is the Courant 
number, and a is the local speed of sound. The functions H' and H0, represented in terms 
of statistical integrals in [15], were approximated by the finite expressions 

H' = --A a exp (--Pa/P') ~- B(p' -- Pb)~" 

f - - L a '  exp ( p ) f o r  a~>O. 
I I  0 = / 0  for ff < 0 

(A, B, Pa, Pb' and L are approximation parameters). 
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Certain specific expressions for the kinetic equations describing the growth of micro- 
crack concentration are analyzed in [23] and it is noted that the exponential nature of the 
dependence of the rate of microcrack accumulation on p permits a qualitatively true pattern 
to be obtained for the fracture under cleavage conditions. 

The coefficients in the equations of state weredetermined from data on creep experi- 
ments for aluminum [24, 25] and were assumed to equal 

•  2 ,5 ,  ~ = 0 ,5 ,  xm = 3 " i 0 - 8  s e c ,  T l = i , 9 6 . i 0  - 6  s e C ,  

A = 3, B = 0 , 4 5 ,  Pa  = 3 " i 0 - s ,  Pb = i 0 - 3 ,  L = 7 - 1 0  -13.  

It is noted in [23] that it is necessary to match the results of cleavage fracture in- 
vestigations and tests on longevity under load to single fracture kinetics. The introduction 
of a parameter with the sense of a state variable characterizing the change in material struc- 
ture, the defectiveness, say, apparently assumes the confirmation of the possibility of de- 
scribing experimental results in a sufficiently broad range of variation of experiment condi- 
tions. 

The shape of the load pulse was assumed triangular and rectangular with the duration 
t I = 0.75 psec and negative stress amplitudes o 0 = 7 and 8 GPa, respectively. 

Presented in Fig. 3 are results of a numerical modeling of the stress-wave propagation 
and the changes in the traceless component of the microcrack density parameter Pzz in the 
cleavage section with time (t = 0.75 and 1.5 ~sec in curves 1 and 2; the solid line is the 
rectangular pulse and the dashes the triangular pulse). 

In the stress domain corresponding approximately to the dynamic yield point, a kinetic 
transition in the paramete r p' is realized, which results in an abrupt increase in the stress 
relaxation tempo, a change in the plastic wave profile, and the extraction of the elastic 
predecessor. It is noted in [26] that the shock wave structure is determined mainly by the 
dependence of the relaxation time on the parameters characterizing the medium and varying 
during loading. The singularity of the description proposed is that an abrupt change in 
the parameter Pik' resulting in substantial diminution in the stress relaxation time is real- 
ized in a situation analogous to a phase transition of the first kind. A similar dynamic 
reaction of solids is observed in polymorphic transformations, transitions of solids from 
one crystalline modification to another [27]. In this case, two shocks are propagated in 
the substance, one after the other. Splitting of the wave is associated with the anomalous 
behavior of the shock adiabat of the substance in the phase transition domain, whose analog 
is an abrupt change in the microcrack orientation mode, resulting in a jump in the magnitude 
of the deformation [14]. 

Therefore, by using the tensor damage parameter and taking account of the nonlinear 
kinetics of its change during deformation, the elastic viscoplastic behavior can be described, 
including even the unstable plastic reaction, within the framework of the relaxation equation 
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for the stress tensor. A model is proposed in [26] that takes account of the change in the 
relaxation time, and the structure of wave fronts is studied on its basis. The change in 
relaxation time is described with the use of activation relationships that take account of 
the level of the acting stresses. In substance this corresponds to the assumption that the 
relaxation time in the parameter Pik, the characteristic time of equilibrium buildup for 
structural changes in the material, is substantially less than the stress relaxation time. 
This assumption is not made in the description under consideration. 

Reflection of a compression wave from a free surface results in the formation of a ten- 
sile pulse; the appearance of volume changes in the material because of microcrack growth 
and fracture. 

The kinetics of the growth of the bulk microcrack concentration is represented in Fig. 
4 [a for 3.065, 3.0202, and 2.975 Dsec (lines 1-3), o0 = 4 GPa; and b for 3.4710, 3.3352, 
2.9295, 2.9287, and 2.828 ~sec (lines 1-5), o 0 = 7 GPa]; it reflects the following stages 
of disperse fracture. In the domain of values of the phenomenological parameters correspond- 
ing to 6 > 6c, the microcrack growth process is characterized by their relative weak-volume 
interaction and disperse fracture is felt mainly as a change in the relaxation properties 
of the material. As already noted, this is observed especially strongly for an orientation 
transition that is accompanied by the appearance of a more ordered system of microcracks. 
An abrupt transition to an ordered structure in macroscopic volumes can result in deforma- 
tion property anomalies known in dynamics problems as fracture due to plastic shear insta- 
bility [28]. As the microcrack bulk concentration grows, a transition occurs to the abso- 
lutely unstable branch of the dependence pzz(Ozz) (see Fig. la), and the fracture process 
continuing to remain disperse discovers new features intrinsic to nonlinear systems under 
kinetic transition conditions [29]; in the domain 6 < 6c the microcrack generation and growth 
process is characterized by explosive instability. 

Transition through the explosive instability threshold (6 = 6c) is accompanied by re- 
placement of the time asymptotic for Pzz and intense growth of defects in the overstress 
fields generated by the microcracks. The scattered fraction is replaced by the formation 
of clusters from the dispersely fractured domains, and from this time the kinetics of the 
fracture process is determined by the interaction of the clusters that are foci of micro- 
scopic cracks [15]. The situation under consideration is analogous to that which exists 
in the theory of phase transitions [30], as well as in the mathematical theory of combus- 
tion and explosion [31]. As is known, the initial differential equations of the theory of 
combustion and explosion have continuous solutions, dependent in a continuous manner on the 
parameters, initial and boundary conditions. But spasmodicity of the solutions occurs in 
extracting the asymptotic, their criticality to a small change in the parameters; i.e., the 
nature of the solution changes substantially. 

The growth of the microcrack bulk concentration is accompanied by an abrupt increase 
in the traceless component of the tensor Pik- Inversion of the sign of p' (see Fig. 3b) is 
associated with the reflection of the compression wave from a free surface and the formation 
of a tension wave. As the amplitude of the initial load pulse increases, a transition oc- 
curs from the microcrack distribution with one maximum (Fig. 4a) to the multiple formation 
of foci (Fig. 4b), domains with a sharply increased rate of microcrack growth. 

Experimental information about the regularities of cleavage fracture is contained in- 
directly in measurements of the velocity of the free surface of shock-loaded plates [32]. 
Displayed in Fig. 5 are computed velocity profiles of a free surface w (i and 2 are rec- 
tangular and triangular pulses). The motion of the free surface is determined by interac- 
tion of the unloading and perturbation waves formed in the fracture zone as a result of micro- 
crack growth. The emergence of the elastic predecessor with amplitude -0.4 GPa is extracted 
on the w profiles. Because of the elastic predecessor, the emergence of the plastic shock 
and the subsequent damped fluctuations of the velocity w is observed during reverberation 
of the cleavage pulse. These fluctuations indicate that either a free surface or a domain 
with low dynamic stiffness appeared within the specimen [i0]. The investigated regulari- 
ties of the transition to macroscopic fracture permit giving an explanation of the over- 
loading phenomenon during loading of microsecond durations and the associated ambiguity in 
determining the fracturing stresses [33]. Comparison of the curves Ozz(Uzz) and pzz(Uzz) 
(see Fig. 2) discloses a characteristic singularity, the difference in the maximal values 
of the stresses in the dependences Ozz(Uzz) is not reflected in practice in the level of the 
critical values of the parameter Pzz" 
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The explanation of this situation is the existence of a self-similar solution for (1.5) 
and (1.7) that corresponds to the asymptotic on which the microcrack growth process is char- 
acterized by an explosive instability [13]. Therefore, the ambiguity in determining the 
fracturing stresses as well as the weak dependence of the time to fracture on the amplitude 
of the initial pulse (the phenomenon of the dynamic branch [8]) under loadings with duration 
-10 -7 are related to the fact that under shock-loading conditions the crack formation process 
proceeds more rapidly than the growth of tensile stresses in the spall section, which indeed 
results in limiting of the overload [34]. 

8. 

9. 

i 0 .  
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13. 
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